Brief note on Neuroplasticity

Neuroplasticity can be viewed as a general umbrella term that refers to the brain’s ability to modify, change, and adapt both structure and function throughout life and in response to experience. Just as individual differences contribute to variability observed in brain structure and function, mechanisms of neuroplasticity also show significant variability across individuals. Indeed, a growing number of recent studies suggest that the rules and mechanisms that govern cortical plasticity are more variable than previously thought.
Rapid change or reorganization of the brain’s cellular or neural networks can take place in many different forms and under many different circumstances. Developmental plasticity occurs when neurons in the young brain rapidly sprout branches and form synapses. Then, as the brain begins to process sensory information, some of these synapses strengthen and others weaken. Eventually, some unused synapses are eliminated completely, a process known as synaptic pruning, which leaves behind efficient networks of neural connections. Other forms of neuroplasticity operate by much the same mechanism but under different circumstances and sometimes only to a limited extent. These circumstances include changes in the body, such as the loss of a limb or sense organ that subsequently alter the balance of sensory activity received by the brain. In addition, neuroplasticity is employed by the brain during the reinforcement of sensory information through experience, such as in learning and memory, and following actual physical damage to the brain (e.g., caused by stroke), when the brain attempts to compensate for lost activity.
The same brain mechanisms—adjustments in the strength or the number of synapse between neurons—operate in all these situations. Sometimes this happens naturally, which can result in positive or negative reorganization, but other times behavioural techniques or brain-machine interfaces can be used to harness the power of neuroplasticity for therapeutic purposes. In some cases, such as stroke recovery, natural adult neurogenesis can also play a role. As a result, neurogenesis has spurred an interest in stem cell research, which could lead to an enhancement of neurogenesis in adults who suffer from stroke, Alzheimer disease, Parkinson disease, or depression. Research suggests that Alzheimer disease in particular is associated with a marked decline in neurogenesis.
Journal of Neuroscience and Neuropharmacology welcomes Original article, Mini review, Commentary, Short communication or Case report on the purview of Neuroscience field. We would be beholden if you could submit your article in our journal.
Manuscript can be submitted online .
Best regards
Jessica Watson
Managing Editor
Journal of Neuroscience and Neuropharmacology