Boreal Ecosystem

Image

A boreal ecosystem is an ecosystem with a subarctic climate located in the Northern Hemisphere, approximately between 50° to 70°N latitude. These ecosystems are located in Boreal forests which are commonly known as the taiga, particularly in Europe and Asia. The ecosystems that lie immediately to the south of boreal zones are often called hemiboreal.

Boreal ecosystems display high sensitivity towards both natural and anthropogenic climate change, atmospheric warming due to greenhouse gas emissions ultimately leads to a chain reaction of climatic and ecological effects. The initial effects of climate change on the boreal ecosystem can include, but are not limited to, changes in temperature, rainfall, and growing season. Based on studies from the boreal ecosystems in the Yukon, a territory in northwestern Canada, climate change is having an impact on these abiotic factors. As a consequence, these effects drive changes in forest ecotone as well as marshlands or lakes in boreal ecosystems. This also concerns plant productivity and predator-prey interactions, which ultimately leads to habitat loss, fragmentation, and threatens biodiversity.

In terms of boreal trees, the poleward limit for any given species is most likely defined by the temperature, whereas the equatorial limit is generally defined by competitive exclusion. Basically, as changes in climate occur, change in the corresponding weather variables follows. As climate conditions change, ecosystem alterations involving timing for migration, mating, plant blooming can occur. This can lead to the transition into a different type of ecosystem as the northward shift of plant and animal species has already been observed. Trees may expand towards the tundra; however, they may not survive due to various temperature or precipitation stressors. The rate depends on growth and reproductive rate, and adaptation ability of the vegetation. In addition, the migration of flora may lag behind warming for a few decades to a century, and in most cases warming happens faster than plants can keep up.

Due to permafrost thaw and disturbance alterations such as fire and insect outbreaks, certain models have suggested that boreal forests have developed into a net carbon source instead of a net carbon sink. Although the trees in the boreal are aging, they continue to accumulate carbon into their biomass. However, if disturbed higher than normal amounts of carbon will be lost to the atmosphere.

Journal of Ecosystem and Ecography is an international open access journal publishing the quality peer-reviewed research articles relevant to the field of Environmental Sciences. The journal selects the articles to be published with a single bind, peer review system, following the practices of good scholarly journals. It supports the open access policy of making scientific research accessible to one and all.

Manuscripts can be uploaded online at Editorial Tracking System (https://www.scholarscentral.org/submissions/ecosystem-ecography.html) or forwarded to the Editorial Office at ecosystem@emedscholar.com

Grace

Journal Manager

Journal of Ecosystem and Ecography

Email: ecosystem@emedscholar.com